High-performance Application and Computers Studying PErformance and Correctness In Simulation

Paris, May 30th 2018

Meeting Schedule

10:00-13:00

- General presentation of HAC SPECIS
- Administrative Information
 - Positions, dissemination, collaborations, publications,
- A few success stories

13:00 Lunch at "Le Repère"

14:30-17:00

- 3 scientific focuses
- Perspectives & Discussions

Outline

- General Presentation Context: Modern HPC HAC SPECIS and SimGrid
- Administrative Facts
- Success Stories

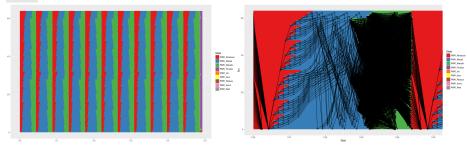
Capacity planning with SMPI (Arnaud) StarPU-SimGrid (Samuel) Exact and Statistical Model Checking in Simgrid (Stephan) Improving State Equality with Static Analysis (Emmanuelle) Collateral Projects (Frédéric)

Focus

Predicting Energy Consumption (Anne-Cécile & Arnaud) StarPU-SimGrid (Samuel & Emmanuel) Formal Aspects in HAC SPECIS (Martin & Thierry)

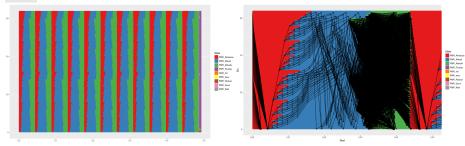
Perspectives

Modern Supercomputers


TaihuLight	40 960×260 (RISC)	Fat-Tree	15MW
Tianhe-2	32,000×12 (Xeon) + 48,000 Xeon Phi	Fat-Tree	18MW
Piz Daint	5,272×12 (Xeon) + 5,272 P100	DragonFly	2MW
Gyoukou	$1,248 \times 16$ (Xeon D) + 9,984 PEZY-SC2 (1,984)	???	1MW
Titan	6,274×16 (AMD) + 18,688 K20	3D-Torus	8MW
Sequoia	98,304×12 (Power A2)	5D-Torus	8MW

• Up to 20,000,000 cores, accelerators, a complex high speed interconnect

• Co-design: Which technology for which application ? Energy/power management ?


Programming Supercomputers

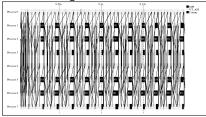
MPI (1994): \rightsquigarrow regular algorithmic patterns

Programming Supercomputers

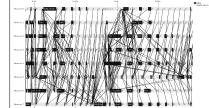
MPI (1994): \sim regular algorithmic patterns

 But many other APIs to exploit cores, GPUS, KNC, KNL, FPGAs, ...:

 OpenMP
 CUDA
 OpenCL
 Cilk
 Charm++
 KAAPI
 StarPU
 QUARK


 ParSEC
 OmpSs
 ...

Exploitation is a programming (coding + algorithm) nightmare


Handling Supercomputers at the Application Level

Larger and larger scale hybrid machines are a pain for application developers

- Programming models do not mix well
- Possible programming approaches "Rigid, hand tuned"

"Task-based" and Dynamic

MUMPS

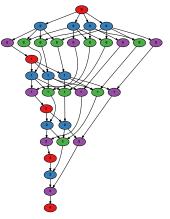
Analysis and Comparison of Two Distributed Memory Sparse Solvers Amestoy, Duff, L'excellent, Li. ACM Trans. on Math. Software, Vol. 27, No. 4, 2001.

 \rightsquigarrow Applications are more and more adaptive

Toward Exascale

Modern Application Structure

- 1. Task-based Runtime (e.g., StarPU)
- 2. Task implementation Auto-Tuning


Typical Domains

- Dense linear solvers (e.g., Chameleon)
- Sparse linear solvers (e.g. qr_mumps), Low-rank
- Fast Multipole Methods
- Seismic application
- M.L. for Climate/Weather prediction

 \rightsquigarrow adaptive applications, synchronizations, complex optimizations/scheduling

Performance ??? Correctness ???

Simulation & Model Checking

Performance Evaluation challenges

MPI/StarPU Simulation: what for ?

1. Helping application/runtime developers

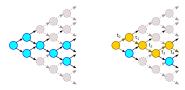
- Non-intrusive tracing, repeatable execution with classical debugging tools
- Save computing resources (runs on your laptop if possible)
- Provide a sound baseline for performance non regression testing
- 2. Helping application end-users
 - How much resources should I ask for? (scaling)
 - Configure MPI collective operations (tuning)
 - Provide baseline (did something go wrong ?)
- 3. Capacity planning
 - Energy consumption: can we save on components ?
 - Hardware upgrade: what-if the network was this ?

Could we have a tool that allows for this on a daily basis?

Formal verification challenges

MPI/StarPU Model Checking: what for ?

- Checking dynamic properties (deadlock, progression) of real HPC applications and runtimes
 - Heisenbugs are common
 - HPC applications are dirty but also have specific rigid structures
 - Adaptative applications require to explore all possible executions
- Quantitative properties (e.g., swapping)
 - Exact computation is painful
 - Estimate probability of particular events


Could we have a tool that allows for this on a daily basis?

The need for specific tools/language is a showstopper for adoption in the HPC community \sim Many almost unexplored problems on real apps

Global meetings help us discriminating short term and long term challenges

Simulation vs. Model Checking

- Simulation explores one possible execution of the program according to the features/limitations of the platform
- Model checking explores all possible executions of the program

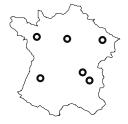
State space with simulation

State space with model checking

- Simulation and model checking are complementary:
 - Simulation for performance evaluation
 - Model Checking for the verification of execution properties
- Both run automatically

HAC Specis

HAC SPECIS Goal


- Bridge the gap between the HPC^{*}, formal verification[†] and performance evaluation[§] communities
- Use SimGrid as an prototyping/integration platform

Partners

- Rhône Alpes: AVALON* \S POLARIS* \S (+ CEA*)
- Bretagne Atlantique: MYRIADS* [†], SUMO[†]
- Sud Ouest: HIEPACS*, STORM*
- Île de France: MEXICO[†]
- Grand Est: VERIDIS[†]

A few dates

- Initial version in Jan 2014
- Final version in Dec 2016 (accepted April 2016)
- Kickoff June 2016 @ Rennes

Why Simgrid ?

SimGrid: A 18 years old open-source project. Collaboration between France (INRIA, CNRS, Univ. Lyon, Nancy, Grenoble, ...), USA (UCSD, U. Hawaii), UK, Austria (Vienna)...

- 500 cite, 300 use, 60 extend
- Initially focused on Grid settings, we argue that the same tool/techniques can be used for P2P. HPC and cloud
- Goals: A usable tool with predictive capability
- SimGrid offers model checking capabilities since a few years

SimGrid 4 HPC

SMPI (2008-...) BigDFT, Ondes3D, SpecFEM3D, ... StarPU-SimGrid (2013-...) Dense solvers, early work on gr_mumps

A Flourishing state of the Art

Many simulation projects for HPC

- Dimemas (BSC, probably one of the earliest)
- PSINS (SDSC, used to rely on Dimemas)
- BigSim (UIUC): BigNetSim or BigFastSim
- LogGopSim (UIUC/ETHZ)
- SST (Sandia Nat. Lab.)
- XSim (Oak Ridge Nat. Lab.)
- CODES (Argonne Nat. Lab.)

Verification for HPC

- CIVL (Delaware)
- MUST (Aachen)
- ISP and DAMPI (Utah)

Very few allow to work with real applications directly

Outline

- General Presentation Context: Modern HPC HAC SPECIS and SimGrid
- Administrative Facts
- Success Stories

Capacity planning with SMPI (Arnaud) StarPU-SimGrid (Samuel) Exact and Statistical Model Checking in Simgrid (Stephan) Improving State Equality with Static Analysis (Emmanuelle) Collateral Projects (Frédéric)

• Focus

Predicting Energy Consumption (Anne-Cécile & Arnaud) StarPU-SimGrid (Samuel & Emmanuel) Formal Aspects in HAC SPECIS (Martin & Thierry)

• Perspectives

Publications and Dissemination

Co-publications

- CCPE15, ICPADS15, Cluster17, TPDS17, CCPE18
- SC17: Correctness, VPA

Dissemination

- SC16, SC17, ISC18 booths
- SIAMPP 2018: BoF on Simulation
- Intervention DGDT
- Maison simulation
- . . .

Outline

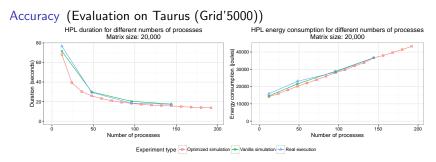
- General Presentation Context: Modern HPC HAC SPECIS and SimGrid
- Administrative Facts
- Success Stories

Capacity planning with SMPI (Arnaud) StarPU-SimGrid (Samuel) Exact and Statistical Model Checking in Simgrid (Stephan) Improving State Equality with Static Analysis (Emmanuelle) Collateral Projects (Frédéric)

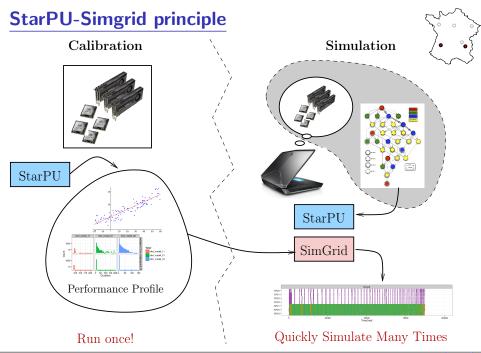
• Focus

Predicting Energy Consumption (Anne-Cécile & Arnaud) StarPU-SimGrid (Samuel & Emmanuel) Formal Aspects in HAC SPECIS (Martin & Thierry)

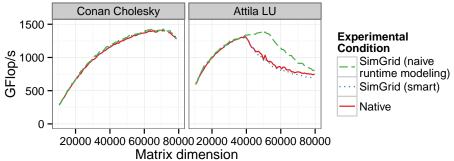
Perspectives

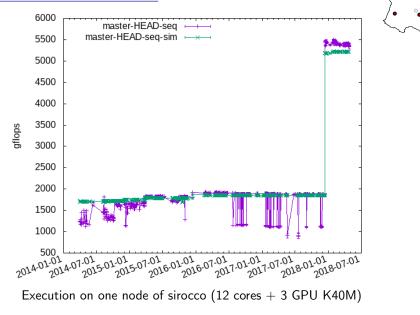

HPL and the Top500

Context

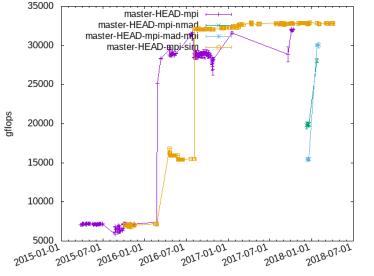

- Real execution (qualification benchmark)
 - Matrix of rank 3,875,000: \approx 120 Terabytes
 - 6,006 MPI processes for 2 hours: 500 CPU-days
- Simulation/Emulation with SMPI
 - 1 Xeon E5-2620 server (Nova, Grid'5000)
 - $\bullet~\approx$ 47 hours and 16GB

Stampede, U.S.A., #20 with \approx 5 Pflops 56 Gbit/s FDR InfiniBand Fat tree topology 6,400 \times (8 cores + 1 Xeon Phi)


Mismatch with the Stampede qualification run (Intel HPL ^(a)) Perspective Capacity planning, Tune real applications, Co-Design, ...


HAC SPECIS mid-term review

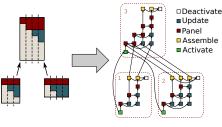
StarPU-Simgrid on dense linear algebra

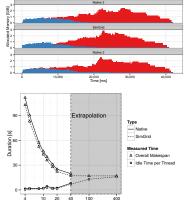

- Accurate simulated time results
- Already required a lot of care
- Extensively used for scheduling research

StarPU-Simgrid for CI

StarPU-Simgrid for CI with MPI

Execution on sirocco with 4 nodes (2×12 cores + 4 GPU K40M)


StarPU Visualization



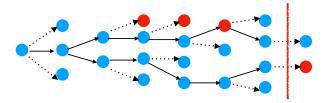
StarPU QR-Mumps

 $\ensuremath{\mathsf{QR}}\xspace{-MUMPS}$ multi-frontal sparse factorization on top of $\ensuremath{\mathsf{StarPU}}\xspace$

- Tree parallelism
- Node parallelism
- Variable matrix geometry
- Fully dynamic scheduling w. StarPU

Number of Threads

Perspective Tune app. and scheduler, capacity (memory) planning


Exact model checking

Explore reachable system states

- · check invariant properties in all states
- · ensure liveness properties of infinite executions

Avoid computing and storing states when possible

- depth-bounded state space exploration
- · save history of actions, recompute state when backtracking
- · DPOR: avoid exploration of independent actions
- · liveness checking: compress states, semantic equality checking

McSimGrid: Evaluation

McSimGrid is part of SimGrid distribution

Success stories

- identified reason of known bug in Chord implementation
- analyze conformance tests proposed for MPI implementations
- verification of send-determinism

Drawbacks

- state space explosion restricts applicability to a handful of processes
- liveness properties are even harder to verify
- certain errors correspond to unrealistic border cases

Ongoing work

- use unfolding techniques to improve reduction (thèse The Anh Pham)
- static analysis for improving state equality detection (Emmanuelle Saillard)

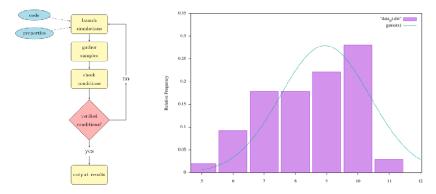
Statistical Model Checking

Alternative to exhaustive verification of Boolean properties

- interval estimation: approximate a parameter value
- · hypothesis testing: statistical evidence for acceptance or rejection
- quantify confidence in the result / probability of error

Perform Monte-Carlo simulation, apply statistical techniques

- no need to construct or store transition system
- applicable without prior knowledge about probability distributions
- simulation and analysis techniques are embarrassingly parallel

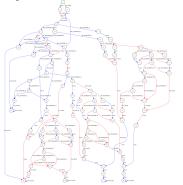

Combine performance evaluation and verification

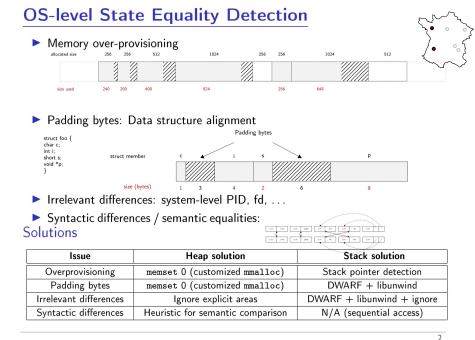
- estimate quantitative parameters, e.g. response time or memory consumption
- closely related to existing techniques within SimGrid

Preliminary Results

Prototypical implementation and application to Chord

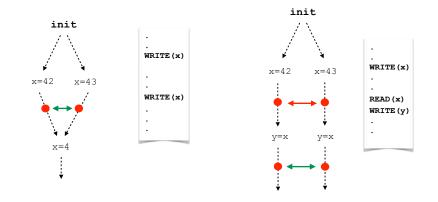
- estimate average lookup time
- · estimate percentage of failed lookups
- · estimate network resilience (capacity to reconnect after failure)



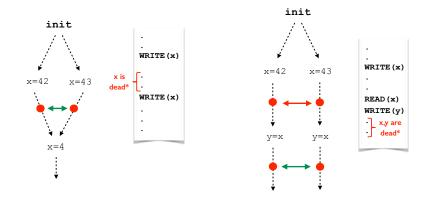

Mitigating the State Space Explosion

System-Level State Equality

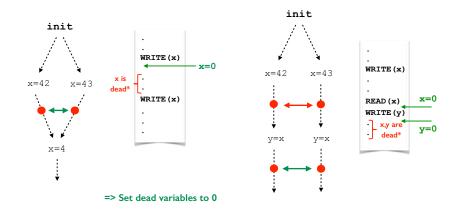
- Detect when a given state was previously explored
- Introspect the application state similarly to gdb
- Also with Memory Compaction



Reduce McSimGrid state space

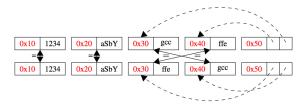


Reduce McSimGrid state space



Reduce McSimGrid state space

*redefined before it is used or never used in the future



*redefined before it is used or never used in the future

6

Reduce McSimGrid state space

Give type information in the heap

Two heaps syntactically different but semantically identical

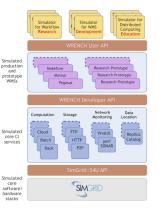
7

BatSim

A Job and Resource Management System Simulator

- A key component in HPC systems
- Decouple the decision making from the simulation
- Uses SimGrid as a backend

- Developed in the Datamove team (Grenoble)
- https://github.com/oar-team/batsim



Wrench

- A Workflow Management System Simulation Workbench
 - Objective
 - Provide high-level building blocks for developing custom simulators

- Targets:
 - Scientists: make quick and informed choices when executing workflows
 - Software developers: implement more efficient software infrastructures to support workflows
 - Researchers: Develop novel efficient algorithms
- Coupled with BatSim
- http://wrench-project.org
 - Collaboration with ISI/USC and UH Manoa
 - Funded by the NSF (grants number 1642369 and 1642335) and CNRS (PICS 7239)

Outline

- General Presentation Context: Modern HPC HAC SPECIS and SimGrid
- Administrative Facts
- Success Stories

Capacity planning with SMPI (Arnaud) StarPU-SimGrid (Samuel) Exact and Statistical Model Checking in Simgrid (Stephan) Improving State Equality with Static Analysis (Emmanuelle) Collateral Projects (Frédéric)

Focus

Predicting Energy Consumption (Anne-Cécile & Arnaud) StarPU-SimGrid (Samuel & Emmanuel) Formal Aspects in HAC SPECIS (Martin & Thierry)

Perspectives

Contribute to next-generation HPC tools $\ \& \$ Gather strengths from 3 communities

Key scientific challenges:

Automatic performance modeling (building models, parameter learning)

- Platform (MPI)
- Computation kernels (StarPU)

OpenMP/SimGrid

(~→ PhD IPL 2018)

- Proxy Apps: 23/40 functional (mostly because of OpenMP)
- Capturing/modeling the impact of compiler/runtime, memory interferences
 Improving DPOR (→ PhD IPL 2016)
 - Good semantic formalization
 - Optimality, merge with state equality, liveness, ...

Applying "classical" safety MC techniques to HPC code (~ PostDoc IPL 2017)

- Op. system challenges, improving state equality w. compiler
- Handle threads, checking applications and runtimes

Technical Considerations

Complex and Dynamic Code Base

- $\bullet\,$ Only 100k sloc, but complex due to versatile efficiency + formal verification
- \bullet Implemented in C++/C (+ assembly); Bindings: Java, Lua and Fortran
- \bullet Active project: commits every day by \approx 6 commiters, 4 releases a year
- Ongoing full rewrite in C++ along with Release soon, Release often

Technical Considerations

Complex and Dynamic Code Base

- Only 100k sloc, but complex due to versatile efficiency + formal verification
- Implemented in C++/C (+ assembly); Bindings: Java, Lua and Fortran
- Active project: commits every day by \approx 6 commiters, 4 releases a year
- Ongoing full rewrite in C++ along with Release soon, Release often

- 740 integration tests, 10k units (coverage: 80%)
- Each commit: 22 configurations (4 OS, 3 compilers, 2 archs; 3 providers)
- Nightly: 2 dynamic + 2 static analyzers; StarPU, BigDFT and Proxy Apps
- We cultivate our garden: simplify to grow further

Building a Community

Communication and Animation

- SimGrid User Days: Welcome newcomers & Take feedback since 2010
- Scientific tutorials, Booth at SuperComputing & others; Companies Courses
- 500 cite 300 use 60 extend; 30 mails/month; 5 bugs/month; Stack Overflow

Preliminary Industrial Contacts

- CERN: currently testing the LHC DataGrid before production
- Intel/KAUST: internal project (est. at SC'17)
- Octo: dimensionning Ceph infrastructures for their clients (past attempt)
- Amazon/Nice: very preliminary contacts for dimensionning, service to clients
- My dream: make open-source IT infra (Samba, Ceph) testable with SimGrid
- Possible Income: subscription of 6-8 supporting institutions/companies

Toward Education

- Teach now the researchers and engineers of tomorrow to SimGrid
- Done: SMPI CourseWare, PeerSimGrid; Ongoing: Cloud, Wrench and more?